Extensions of Umbral Calculus Ii: Double Delta Operators, Leibniz Extensions and Hattori-stong Theorems

نویسندگان

  • FRANCIS CLARKE
  • JOHN HUNTON
  • NIGEL RAY
چکیده

We continue our programme of extending the Roman-Rota umbral calculus to the setting of delta operators over a graded ring E∗ with a view to applications in algebraic topology and the theory of formal group laws. We concentrate on the situation where E∗ is free of additive torsion, in which context the central issues are number-theoretic questions of divisibility. We study polynomial algebras which admit the action of two delta operators linked by an invertible power series, and make related constructions motivated by the Hattori-Stong theorem of algebraic topology. Our treatment is couched purely in terms of the umbral calculus, but inspires novel topological applications. In particular we obtain a generalised form of the Hattori-Stong theorem.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On certain fractional calculus operators involving generalized Mittag-Leffler function

The object of this paper is to establish certain generalized fractional integration and differentiation involving generalized Mittag-Leffler function defined by Salim and Faraj [25]. The considered generalized fractional calculus operators contain the Appell's function $F_3$ [2, p.224] as kernel and are introduced by Saigo and Maeda [23]. The Marichev-Saigo-Maeda fractional calculus operators a...

متن کامل

Equality propositional logic and its extensions

We introduce a new formal logic, called equality propositional logic. It has two basic connectives, $boldsymbol{wedge}$ (conjunction) and $equiv$ (equivalence). Moreover, the $Rightarrow$ (implication) connective can be derived as $ARightarrow B:=(Aboldsymbol{wedge}B)equiv A$. We formulate the equality propositional logic and demonstrate that the resulting logic has reasonable properties such a...

متن کامل

BAER AND QUASI-BAER PROPERTIES OF SKEW PBW EXTENSIONS

A ring $R$ with an automorphism $sigma$ and a $sigma$-derivation $delta$ is called $delta$-quasi-Baer (resp., $sigma$-invariant quasi-Baer) if the right annihilator of every $delta$-ideal (resp., $sigma$-invariant ideal) of $R$ is generated by an idempotent, as a right ideal. In this paper, we study Baer and quasi-Baer properties of skew PBW extensions. More exactly, let $A=sigma(R)leftlangle x...

متن کامل

On umbral extensions of Stirling numbers and Dobinski-like formulas

ψ-umbral extensions of the Stirling numbers of the second kind are considered and the resulting new type of Dobinski-like formulas are discovered. These extensions naturally encompass the two well known q-extensions .The further consecutive ψ-umbral extensions of CarlitzGould q-Stirling numbers are therefore realized here in a two-fold way . The fact that the umbral q-extended Dobinski formula ...

متن کامل

On Simple Characterisations of Sheffer psi- polynomials and Related Propositions of the Calculus of Sequences

A “Calculus of Sequences” had started by the 1936 publication of Ward suggesting the possible range for extensions of operator calculus of Rota-Mullin, considered by several authors and after Ward. Because of convenience we shall call the Wards calculus of sequences in its afterwards elaborated form – a ψ-calculus. The notation used by Ward, Viskov, Markowsky and Roman is accommodated in confor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1995